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ABSTRACT 

Department of Defense (DOD) Development Test and Evaluation (DT&E) 

activities for new acquisitions account for a large portion of time and money 

during the Engineering and Manufacturing Development Phase. DOD Program 

Management Office test personnel develop test schedules manually using time 

estimates and heuristic subject matter expert advice for each test to forecast the 

overall time and costs associated with a developed course of action. 

These manually constructed schedules take weeks to develop via many 

planning iterations to construct an acceptable, but not necessarily feasible or 

optimal solution. Ultimately, these forecast schedules and duration estimates can 

be inaccurate, and may result in schedule delays and/or cost overruns.  

This thesis presents an optimization and simulation model as a decision 

support tool to improve current DT&E scheduling. We represent this resource-

constrained scheduling problem as an integer linear program, and develop set 

enumeration reduction techniques, as well as a cascade method to reduce solve 

times. The proposed model, unlike current manual scheduling techniques, 

suggests schedules that are feasible, nearly optimal, and are produced quickly 

for effective analysis of alternatives. 
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EXECUTIVE SUMMARY 

Department of Defense (DOD) Development Test and Evaluation (DT&E) 

activities for new acquisitions account for a large portion of time and money 

during the Engineering and Manufacturing Development Phase. DOD Program 

Management Office test personnel develop DT&E schedules manually using 

duration estimates and heuristic subject matter expert advice for each test to 

forecast the duration and costs associated with a developed course of action 

(COA). This thesis presents an optimization and simulation model as a decision 

support tool to improve current DT&E scheduling. 

The DT&E scheduling problem has constraints on the number and type of 

available test assets, the schedule of their availability, test requirements for 

numbers and types of these assets, and test venue constraints to accommodate 

test assets and perform tests. Additionally, tests have priority and precedence 

relationship constraints. Due to the complexity of this problem, manually 

constructed schedules take weeks to develop one COA and are not necessarily 

feasible or optimal solution. Ultimately, these forecast schedules and duration 

estimates can be inaccurate, and may result in schedule delays and/or cost 

overruns. 

In this thesis, we formulate this resource-constrained scheduling problem 

(RSCSP) as an integer linear program (ILP) implemented in the computer 

program General Algebraic Modeling System (GAMS). The objective function 

expresses DT&E duration as well as penalties for test asset movements between 

venues, and penalties for any violation of precedent constraints or violations of 

test completions based on test priorities, a total project cost we seek to minimize. 

We use test data from a previous DT&E project, developed by United 

States Marine Corps Systems Command (MARCORSYSCOM), to verify and 

validate the proposed model. 



 xvi 

The data contains 43 tests, 36 of which are involved in partial orders (i.e., 

have precedence relationships). All tests are either high or medium priority, and 

their duration estimates are given in days. There are six available test venues 

located across the United States, and seven test assets available. There is only 

one test asset variant, and all test assets are available at the beginning of 

testing. The resulting ILP has 39,031 constraints and 29,271 variables, 10,590 of 

which are discrete variables. RSCSPs are particularly difficult to solve, so we 

apply set enumeration reduction techniques to reduce solve times from several 

hours to less than an hour. The case study results show that the differences 

between the MARCORSYSCOM and the GAMS model estimates are within two 

weeks for three-to-six month schedules. 

Additionally, we use a cascade method to further speed up computation 

time by solving and fixing solutions for smaller ILPs over iteratively larger 

planning horizons. The cascade method does not necessarily suggest optimal 

solutions, but does provide feasible, and reasonably optimal solutions (within two 

weeks for three-to-six month schedules) with solve times of less than two 

minutes. We use the cascade method with Beta-distributed random variables for 

test durations to simulate overall DT&E duration, which provides a distribution of 

anticipated outcomes for temporal statistical analysis. The full range of simulated 

DT&E duration outcomes provides a better assessment of the temporal risks 

involved for planning and budgeting purposes than the current 

MARCORSYSCOM point estimates of optimistic, mean and pessimistic. This 

allows us to make probabilistic assessments such as probability of successfully 

completing all DT&E activities by a certain time, or how much time is required to 

complete all DT&E activities with a certain probability. 

The proposed model, unlike current manual scheduling techniques, 

suggests schedules that are provably feasible and nearly optimal, and are 

produced quickly for effective analysis of alternatives. 
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I. INTRODUCTION 

Department of Defense (DOD) Development Test and Evaluation (DT&E) 

activities for new acquisitions account for a large portion of time and money 

during Engineering and Manufacturing Development (EMD). DOD Instruction 

5000.02 (2015) states that DT&E activities “evaluate the ability of the system to 

provide effective combat capability, including its ability to meet its validated and 

derived capability requirements” (p. 25). DOD Program Management Office 

(PMO) test personnel develop test schedules manually using time estimates and 

heuristic subject matter expert (SME) advice for each test to forecast the overall 

time and costs associated with a developed course of action (COA). COAs 

considered vary the number of test assets available, total testing time available, 

and which tests must be completed. These COA estimates account for variability 

in the individual test time estimates, but do not accurately show the variability in 

the overall schedule. 

These manually constructed schedules also require many planning 

iterations to develop an acceptable, but not necessarily feasible or optimal, 

solution. Ultimately, these forecast schedules and duration estimates can be 

inaccurate, and may result in schedule delays and/or cost overruns. 

This thesis introduces an optimization and simulation model as a decision 

support tool to suggest test schedules that minimize duration of testing, and 

assess different COAs. Additionally, we will show feasibility under the given 

constraints to determine number of test assets and/or time required to complete 

the test schedule.  

A. CURRENT TEST SCHEDULE DEVELOPMENT 

Currently, the Marine Corps Systems Command (MARCORSYSCOM), 

which is responsible for all major systems’ acquisitions within the Marine Corps, 

relies on several SMEs and PMO test personnel to develop the initial test 

schedule for any new acquisition. This is used to establish an initial plan for 
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coordinating test personnel, test venues, movement of test assets and a cost 

estimate for a program test budget. 

Developing this schedule takes weeks and involves uncertainty in the 

length of each test due to many factors. A short list of these uncertainties 

includes asset maintenance problems, retesting, test facility availability conflicts, 

weather delays and available test personnel. Additional constraints include the 

number of required tests and their associated priorities, the order in which tests 

must be performed, the number and variants of test assets available, and the 

subset of test venues that can accommodate each test. These constraints often 

change, requiring the test personnel to rework the schedule. One objective is to 

minimize the length of time required to complete all testing. This typically equates 

to less total testing costs and enabling the acquisition program to move forward. 

However, the main objective is to project with accuracy the total testing time 

required for budgeting and coordination purposes. 

1. Test Event List 

Test schedule development begins with identifying the list of tests that 

must be conducted to evaluate given performance requirements. Each test is 

placed in a test functional group, known as a critical technical parameter (CTP) 

area, for representation on higher-level published test schedules. The Defense 

Acquisition Guidebook (Defense Acquisition University, 2015) states, “CTPs 

should focus on critical design features or risk areas (e.g., technical maturity, 

reliability, availability, and maintainability issues, physical characteristics or 

measures) that if not achieved or resolved during development will preclude 

delivery of required operational capabilities” (Section 9.5.3.4). For each test, the 

following elements are identified (see also Table 1): 

• critical technical parameter (CTP) area, 

• test duration estimates in days, 

• asset variant type (when applicable), 

• number of assets required, 
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• capable test venues, 

• test event predecessors, and 

• test event priority (Low, Medium or High). 
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Table 1.   An excerpt of example test data that includes CTP area, precedence, venues, priority, duration, and 
number required. 

 

CTP Area Test Plan/Sheet Prerequisite)test) Test Venue Priority of 
Tests 

Test Days 
Required

LM Tilt Table Y  side slopes ATC H 1
LM Side Slopes ATC H 2

Pessimistic Most 
Likely Optimistic Planning 

Est
Multiple 

Vehicles Req.
3 2 1 2 No
7 4 3 4 No

S/HF Initial Inspection and Safety Checkout Y all WM test AVTB H 9
WM Fuel Consumption - amphibious AVTB H 5

WM Plow in testing Y speed/powering, controlled 
maneuverability, max Gross vehcile AVTB H 2

30 18 13 19 No
17 10 7 11 No

7 4 3 4 No

S/HF Initial Inspection and Safety Checkout Y all test ATC H 9 30 18 13 19 No
S/HF APU Noise ATC/AVTB M 2 7 4 3 4 No
S/HF Climatic Chambers ATC/YPG M 20 67 40 29 43 No

F Stabilization System Performance Y Man Gun & water gunnery testing ATC H 3 10 6 4 6 No
F Water Gunnery (depends on requirements) ATC/AVTB L 10
S NBC testing EPG L 10
S E3 testing Y ship operations WSMR M 60

33 20 14 21 No
33 20 14 21 No
200 120 86 128 No
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2. Asset Availability 

PMO test personnel establish total assets available for testing by number 

and variant based on contractual delivery schedules. Individual asset availability 

will vary due to maintenance reliability problems that are associated with all 

developing technology. This is accounted for in each test duration estimate, and 

explained in further detail in section B of this chapter. Asset availability has a 

direct impact on duration of testing and is a critical element in COA analysis. 

3. Time Period Availability 

PMO test personnel determine the time periods available for each test and 

test asset. This is based on when tests must be done (i.e., seasonal climatic 

requirements, contractor availability, etc.), and when tests must be completed 

(i.e., major program milestones and/or decision points). This is done for each test 

asset based on previously determined asset availability. 

4. Test Asset Schedule Completion 

PMO test personnel use the inputs derived from the previous steps to 

manually construct a schedule in Microsoft Excel (Microsoft, 2011). This is 

meeting-intensive with multiple personnel relying on their experience to advise 

how to meet all the given constraints or make assumptions that effectively relax 

these constraints. Additional information on the computational methods used to 

generate these schedules will be discussed in section B of this chapter. 

5. Opportunities for Improvement 

The current scheduling method is time consuming, provides no statistical 

forecast for the duration of testing, and does not ensure optimality or feasibility 

(concepts to be defined more carefully later in this thesis). The optimization and 

simulation model developed for this thesis account for the uncertainty of each 

test completion time, while allowing planners to change input parameters, such 

as number of test assets and total test time available. The goal is to provide a 
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model to improve planning and decision making by generating test asset 

schedules that can be used for analysis of alternatives and feasibility 

assessments. 

B. PLANNING FOR UNCERTAINTY IN TEST DURATION 

1. Current Deterministic Methods 

The test planning horizon usually ranges from several weeks to some 

months, and scheduling fidelity is days. The current scheduling method uses the 

mean of a Beta-distribution for the calendar duration estimate of each test. The 

Program Evaluation and Review Technique (PERT) has been widely used since 

it was developed circa 1959 (Malcolm, Roseboom, Clark & Fazar, 1959), but 

since criticized for its assumptions (e.g., Demeulemeester & Herroelen, 2002). 

SMEs provide heuristic statistical parameters for the calendar duration of each 

test in terms of Pessimistic (P), Most Likely (M), and Optimistic (O). When these 

are not given, PMO test personnel generate estimates by dividing a nominal test 

completion time by a range of maintenance availability percentages (e.g. 0.3, 0.5 

and 0.7, respectively). We can view the values of 0.3, 0.5 and 0.7 as a 

pessimistic case where test assets are only available for testing 30% of the time, 

most likely case where they are available 50% of the time, and then an optimistic 

case where they are available 70% of the time. 

These values may change for different tests depending on perceived 

variability from the SMEs. The planning estimate of test duration time is then 

calculated by finding the mean of the Beta PERT distribution with these 

parameters P, M, and O, approximating for a range of six standard deviations or 

99.73% of possible outcomes (Clark, 1962, p. 406). The equation for finding the 

mean is: 

 PlanningEstimate = P + (4 * M )+ O
6

  (1) 

Because this may at first glance seem counterintuitive, we give an 

example of the MARCORSYSCOM estimation technique. For a test that requires 
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seven days, the estimates for P=7/0.3=23, M=7/.05=14, and O=7/0.7=10, results 

in a Planning Estimate of actual calendar day test duration = 15 (see Figure 1). 

 
Figure 1.  Visual representation of the Beta PERT distribution for the 

single test calendar day duration example. Pessimistic (P) 
duration is 23 days, Most likely (mode)(M) is 14 days, and 

optimistic (O) is 10 days, yielding a PERT mean of 15 days. 

Each test duration planning estimate is summed up to determine the 

number of days required for each CTP area. The number of months required is 

determined by assuming there are 22 available workdays in a month (see Table 

2). CTP area durations are then broken up into one-month blocks and moved 

around within the available time periods for each test asset in order to meet the 

identified test program constraints. This is also done using the pessimistic and 

optimistic estimates (see Table 3). 
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Table 2.   Example of test duration planning estimates 
(MARCORSYSCOM)  summed by CTP area to determine 
number of days, and then number of months required to 

complete all DT&E. 

 

Table 3.   Example of a DT&E schedule produced by 
MARCORSYSCOM with the planning estimates provided in 
Table 2. CTP areas are assigned to test assets (V1 through 

V8) by month (1 through 9). 

 

Risk is then assessed by showing the three sums of minimum, planning 

estimate, and maximum required time to overall completion. This is a 

simplification of PERT that has been used since the 1950s, typically when 

computing power was not available to model more precisely (Malcolm et al., 

1959). However, it assumes that the project’s critical path remains the same, not 

accurately accounting for delays of their cascading effects. 

2. Using Randomly-Distributed Test Durations 

The model introduced in this thesis incorporates Monte Carlo simulations, 

randomly drawing from a Beta distribution using the same parameters for the 

optimistic (i.e., O, the shortest, or min) test duration, the pessimistic (i.e., P, the 

longest, or max) test duration, and the most likely (i.e., M, mode, x̂ ) test duration. 

Treating these as statistical parameters for a probability density function Beta

CTP Area Days Months
LM 77 3.5
F 22 1
WM 43 2
S/HF 185 8.5
Surv. 32 2
Comm 32 1
RDT/RGT 150 7
Total 25

P.E. 1 2 3 4 5 6 7 8 9
V1 (P) LM LM SH/F SH/F SH/F
V2 (P) SH/F LM SH/F / LM SH/F SH/F  
V3 (P) SH/F SH/F F
V4 (P) WM WM RGT
V5 (P) Surv Surv Comm
V6 (P) RDT RDT RGT
V7 (P) RDT RDT RGT
V8 (P) LF LF LF LF LF LF LF LF LF

P
la

nn
in

g 
E

st
.
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(a,b) , with a  and b  its parameters we can generate randomly distributed test 

durations following classic project scheduling advice (Malcolm et al., 1959). 

 ˆ ˆ
1 4 , 1 4x - min max - x

a b
max - min max - min

⎛ ⎞ ⎛ ⎞= + = +⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠
 (2 and 3) 

 
This permits us to investigate the effects of random variations in individual 

test durations on completion of the entire test program by taking independent 

draws from a Beta distribution with mint ,  x̂t ,  and maxt  for each test t . This 

produces a histogram of outcomes from each simulated sample of project 

realizations, allowing for a quantitative risk assessment for that project’s 

completion time. Additionally, this ensures that all other constraints are still 

accounted for, with no assumptions about the critical path. 

C. ENSURING FEASIBILITY AND OPTIMIZATION 

1. Ensuring Feasibility 

Unlike the heuristic manual methods currently used, this model produces 

a Directed Acyclic Graph (DAG) representing partial order sequencing of test 

events and attempts to provide a minimum total completion time while honoring 

all incorporated constraints. Because completely feasible schedules may not 

always be achievable, this model will elastically penalize what appear to be 

necessary constraint violations, and allow such violations when necessary to 

meet other feasibility conditions. In this fashion, rather than declaring an 

ambiguous “infeasible model,” all constraint violations are identified for further 

analysis (Brown, Dell & Wood, 1997). 

2. Taking Advantage of Opportunities within Decision Variables 

There are several decision variables within the network that invite 

efficiencies that will lead to minimizing the total test schedule time. These include 

which test assets are used for which tests at which venue and in what sequence. 

The complexity and dimensions involved in this network make it nearly 
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impossible to select the optimal arrangement of these decision variables without 

the aid of optimization. This model assesses every combination for an optimal 

solution, seeking to minimize movement of test assets between test venues, and 

overall DT&E completion time. 

3. Analysis of Alternatives 

As previously discussed, there are several factors that can influence the 

input parameters for a schedule requiring continuous adjustments. These include 

different courses of action (COAs) being considered prior to testing (i.e., number 

of test assets available, total time available for testing, or projected test asset 

maintenance reliability). Current scheduling methods are time consuming, and 

limit the PMO tester’s ability to efficiently evaluate more than two or three COAs. 

This tool can be configured to provide increased analytics across a myriad of 

possible scenarios for more informed decision-making. 
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II. LITERATURE REVIEW 

A. PROJECT PLANNING 

Project planning is a problem that operations research and project 

management professionals have been struggling with for a long time. There have 

been several approaches developed using linear programming to develop 

schedules that optimize project completion in terms of time, cost, and/or risk. 

Modern (i.e., post-1950s) approaches view a project as a directed acyclic 

network of aggregate tasks with precedence relationships. Demeulemeester & 

Herroelen (2002) detail many of these, including the Program Evaluation Review 

Technique (PERT), the Critical Path Method (CPM), and the resource-

constrained project-scheduling problem (RCPSP). These are of particular interest 

to this thesis as the current scheduling method uses elements of the PERT/CPM, 

and the test-scheduling problem presented is a RCPSP. 

B. ACCOUNTING FOR UNCERTAINTY 

1. Program Evaluation Review Technique and the  Critical Path 
Method 

The PERT developed by Malcolm, Roseboom, Clark and Fazar (1959) 

and the CPM developed by Kelley and Walker (1959) are the earliest stochastic 

approaches to project scheduling, and management. These methods were 

developed independently but have become synonymous within the project 

scheduling literature. Both methods focus on a “critical path” discovered within a 

directed network of aggregate project tasks, consisting of shortest longest path(s) 

through this network. A critical path is a sequence of tasks that form a longest 

path through the network, using point estimates for each of the task durations. 

The length of such a shortest longest path equates to the shortest possible 

project completion time. Tasks along such a path are considered critical tasks. 

PERT was initially developed to probabilistically account for variability in 

time for completion of individual tasks, and total project completion for Navy 
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research and development (R&D) projects. Clark (1962) explains why the Beta 

distribution is used to represent task completion times, and subsequently find the 

mean and variance of critical tasks. Additionally, Malcolm et al. (1959) assume a 

single critical path that tasks are independent of one another and that project 

duration times are normally distributed. This simplifies the statistical analysis, 

allowing the first two moments (mean and variance) to be summed along the 

critical path. Although the Central Limit Theorem (e.g., Fischer, 2011) provides 

strong support for such an assertion, it is not necessarily true that the distribution 

of durations of all PERT projects is Normal, or that this distribution will have a 

mean and variance equal to the sum of the means and variances on the critical 

path. In fact, Brown, Carlyle, Harney, Skroch, and Wood (2009) show that 

variability (or vulnerability) of non-critical tasks may pose substantial risks of 

significant project delays. These assumptions do not necessarily reflect the 

realities of the scheduling problem at hand, and will be explored in Chapter IV. 

Fulkerson (1962) mathematically proves that PERT Beta task duration 

point estimates provide optimistic (i.e., shorter) project completion times 

compared to task durations treated as random variables. It has also been argued 

that the Triangle, Uniform (Elmaghraby, 1977), Gamma (Lootsma, 1966), or 

truncated-Weibull (Grose, 2004) distributions may be more appropriate. The Beta 

distribution is used in this thesis for one-to-one comparison against current 

MARCORSYCOM scheduling techniques. 

2. Simulation 

Simulation is considered the most accurate means of accounting for 

variability within networks, but is the most computationally expensive. Davis 

(2008) describes how to calculate the parameters for a Beta distribution using 

PERT task duration estimates. These are used to generate random values for 

Monte Carlo simulations, eliminating the assumptions of a single critical path, 

and normality (Trietsch & Baker, 2011). A similar technique is used in this thesis 

and is further described in Chapter IV. 
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Savage (2009) warns against the “flaw of averages,” which misrepresents 

probabilistic outcomes as a single value, typically the expected value (p.11). This 

is another advantage to using Monte Carlo simulations to display a probability 

distribution of outcomes that more accurately depict the risk involved. 

C. RESOURCE-CONSTRAINED PROJECT PLANNING 

Classic PERT/CPM models only consider time as the critical resource. 

Because we have constraints on the number and type of available test assets, 

the schedule of their availability, test requirements for numbers and types of 

these assets, and test venue constraints to accommodate test assets and 

perform tests in the development test and evaluation (DT&E) scheduling 

problem, we have a resource-constrained project-scheduling problem (RCPSP). 

Such problems are particularly difficult to solve. As the name implies, the RCPSP 

is a scheduling problem with the added complexity of resource constraints in 

addition to the typical temporal constraints. 

Demeulemeester and Herroelen (2002) describe why RCPSPs are 

considered Non-Polynomial (NP)-hard, and while researchers continue to look for 

algorithms to solve these types of problems in polynomial time, such algorithms 

likely do not exist. This has led to many OR professionals to develop heuristics 

that reduce the problem size before searching for an optimal integer linear 

program (ILP) solution.   

Brown, Graves and Ronen (1987) describe a cascade method for solving 

ILP that begins with a smaller subset of the problem, fixes that solution, and then 

iteratively solves larger subsets until the whole problem is solved. This 

significantly reduces computational time and still provides reasonably optimal 

solutions. A similar cascading method is implemented for this thesis and is 

explained in further detail in Chapter IV. 

The model introduced in this thesis uses a combination of set enumeration 

reduction and cascading techniques to elicit PERT/CPM temporal statistical 

analysis from a very challenging RCPSP. Additionally, this model utilizes Monte 
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Carlo simulations with random task durations for additional statistical insights and 

comparison against classic PERT/CPM deterministic project completion times. 
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III. MODEL 

A. PROBLEM RESTATED 

There are several variants of test asset (e.g., pieces of a type of 

equipment to be tested) that need to be subjected to a set of test events 

conducted at a number of test venues (i.e., test facilities). Each test event may 

apply to some subset of test asset variants, and may be performed by any 

suitably equipped test venue. 

The planning horizon consists of discrete, ordered time periods (say, 

days). Each test asset is to be initially delivered to a test venue at the start of a 

given scheduled time period, but may be subsequently moved among other 

venues. Completing each test event requires visiting a test venue for some given 

number of contiguous time periods. Moving a test asset from one test venue to 

another venue, and inspecting it on receipt, requires a given number of 

contiguous time periods. A test asset located at a test venue may be held back 

for other activities, and thus be unavailable for testing during some time periods. 

A test asset can only undergo a single test event during any time period, and 

each test event will be conducted at most once during the planning horizon. 

Each test event has a priority (an ordered attribute), and all higher-priority 

test events should be started before any lower-priority ones are started, and 

completed before a priority-specific deadline day. Lowest-priority tests can be 

completed at convenience, including past the end of the planning horizon (i.e., 

these are optional tests). 

Some tests have precedence over others, and are required to be 

completed before the others are started, independent of their priority. All test 

events of or above a given priority threshold must be completed, and the 

objective is to minimize completion time of the last of these tests. 
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Each test venue has a limit on the number of test assets it can 

accommodate at any time, but there is no limit on test venue capacity to perform 

simultaneous tests. 

B. INPUTS 

1. Test event data, 
2. time period availability data, 
3. predecessor test event sequencing, 
4. test event priority (Low, Medium and High) and deadlines, 
5. test asset availability data,  
6. user specified asset, test event, venue and time period data, 
7. distance between venues data. 

C. FORMULATION 

1. Index Use [~cardinality] 

t T∈    test (alias t’)       [30] 
a A∈    asset type       [3] 

ta A A∈ ⊆   asset types subject to test t    [3] 
vg VG∈   test venue (includes element “any”)   [7] 

\ " "v V VG any∈ ≡  test venue (alias 'v )      [6] 

tv V∈    test venues capable of completing test t   [6] 

,a pv V∈   test venue that can receive asset a at start of p  [6] 
p P∈    time periods in planning horizon (an ordered set) 

 (alias ,p p− + )       [90] 
' tt R∈    precedent test t must finish before test t’ starts  [3] 

i I∈    priority (an ordered set) (alias i’)    [3] 
ti    priority of test t 
th TH T∈ ⊆   tests that must be completed, with | |ti I<   [28] 

2. Data [units] 

, ,a vg pa_rec  type a assets received by venue vg at start of p  [assets] 

,t aa_type_req  number of type a assets required for test t  [assets] 

, ,a v punavail  type a assets unavailable at venue v during p  [assets] 

ta_req   number of assets required for test t   [assets] 

tt_periods  periods test t requires     [periods] 

vv_cap  capacity of venue v      [assets] 
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, 'v vm_periods  periods to move between facilities v and v’  [periods] 

ideadline  period when all priority i tests must be complete  [periods] 

ipenalty  penalty for violating priority i deadline   [cost/period] 
pri_pen policy penalty for starting a lower priority test 
  before a higher priority test is started   [cost] 
prec_elastic indicates  precedence constraints are elastic  [binary] 
prec_pen penalty for not finishing precedent test 
  before starting subsequent test    [cost] 
move_pen  penalty for moving assets from venue-to-venue  [cost/asset  
          period] 
 

3. Decision Variables [units] 

Z   objective function value     [cost] 
tD   =1 if test t cannot be completed    [binary] 

thLATE  periods violating higher-priority test th deadline  [periods] 

, '_ th tPRI VIOL =1 if a higher-priority test th is not started before 
   a lower-priority test  t’ is started    [binary] 

, '_ t tPREC VIOL =1 if a precedent test t is not completed  
  before a subsequent test t’ is started   [binary] 

, ,a v pW   new test asset a deliveries to venue v at start of p [assets] 

, ,t v pX   =1 if test t begins at v at start of time period p   [binary] 

, , ',a v v pY   assets from facility v arriving at 'v  at start of p  
  (note v=v’ admitted for assets not moving)  [assets] 

, ,a v pS   type a assets available at venue v during period p [assets] 
  



 18 

4. Objective Function and Constraints 

  

MIN Z

+( P +1) Dth
th∈TH
∑ + Dt

t∈T \TH
∑ + penaltyith

th∈TH
∑ LATEth

+ pri_pen PRI_VIOLth,t '
th,∈TH ,t '∈T |it >it '

∑ + prec_pen PREC_VIOLt ,t '
t∈T |t '∈Rt

∑
+move_pen m_periodsv ,v 'Ya,v ,v ',p

a,v ,v '≠v ,p
∑ [A0]

s.t. Z ≥ ( p + t_periodsth −1)Xth,v ,p ∀th∈TH ,v ∈Vth ,

p + t_periodsth −1≤ P [A1]

Xt ,v ,p + Dt
v∈Vt ,p+t_periodst−1≤ P

∑ = 1 ∀t ∈T [A2]

( p + t _
v∈Vth , p∈P
∑ periodsth −1)Xth,v ,p

≤ deadlineith
+ LATEth ∀th∈TH [A3]

X
th,v ,p−

v∈Vth ,p−<min{ p, P −t_periodsth}
∑ + PRI_VIOLth,t ' ≥ Xt ',v ,p

v∈Vt '

∑ ∀th∈TH ,t '∈T | ith > it ' ,

p + t_periodst ' −1≤ P [A4]

X
t ',v ',p−

v '∈Vt ' ,p
−+t_periodst '+m_periodsv ',v |v≠v '≤p

∑ + PREC_VIOLt ',t |prec_elastic

≥ Xt ,v ,p ∀t '∈T | t ∈Rt ' ,v ∈Vt ,

p + t_periodst −1≤ P [A5]

X
t ',v ',p−

v '∈Vt ' ,p
−+t_periodst +m_periodsv ',v |v≠v ' = p

∑

≤ X
t ,v ,p+

p≤p+
∑ + PREC_VIOLt ',t |prec _ elastic ∀t '∈T | t ∈Rt ' ,v ∈Vt ,

p + t_periodst −1≤ P [A6]

Wa,v ,p
v∈Va ,p

∑ = a_reca,"any",p ∀a ∈A, p ∈P [A7]

Ya,v ',v ,p
v '∈V |p>m_periodsv ',v

∑ +Wa,v ,p + a_reca,v,p

≥ Ya,v ,v ',p+m_periodsv ,v '
v '∈V
∑ ∀a ∈A,v ∈V , p ∈P [A8]

Sa,v ,p ≤ Ya,v ,v ,p+1 ∀a ∈A,v ∈V , p ∈P [A9]

Sa,v ,p
a∈A
∑ ≤ v_capv ∀v ∈V , p ∈P [A10]
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(Sa,v ,p
a∈A
∑ − unavaila,v ,p ) ≥ a_reqt Xt ,v ,p−

t∈T |Vt ,p−t_periodst +1≤p−≤p
∑

∀v ∈V , p ∈P [A11]
Sa,v ,p − unavaila,v ,p ≥ a_type_reqt ,a X

t ,v ,p−

t∈T |Vt ,p−t_periodst +1≤p−≤p
∑

∀a ∈A,v ∈V , p ∈P [A12]
Z urs [A13]
Dt ≥ 0 ∀t ∈T

LATEth ≥ 0 ∀th∈TH

PRI_VIOLth,t ' ≥ 0 ∀th∈TH ,t '∈T | it > it '

PREC_VIOLt ,t ' ≥ 0 ∀t ∈T | t '∈Rt

Sa,v ,p ≥ 0 ∀a ∈A,v ∈V , p ∈P

Wa,v ,p ≥ 0 ∀a ∈A,v ∈V , p ∈P

Xt ,v ,p ∈{0,1} ∀t ∈T ,v ∈Vt , p ∈P

Ya,v ,v ',p ∈{0,1,2,...} ∀a ∈A,v ∈V ,v '∈V , p ∈P

 

5. Model Description 

a. Direct Solution (Monolith) 

The objective [A0] assesses a penalty if any “high-priority” test is not 

finished (high-priority tests must be finished, lowest priority tests can be finished 

on a not-to-interfere basis), plus a penalty for any test finished after its test 

priority deadline. There is also a penalty for any higher-priority test that is not 

started before any lower-priority one is started, and a penalty for any subsequent 

test begun before a precedent test has been completed. The “cost” units of this 

objective are “periods.”  

Each constraint [A1] requires the objective function value to be at least as 

high as the time period of the last high-priority test completion. 

Each constraint [A2] records whether a test is completed during the 

planning horizon, or signals that this has not happened. 

Each constraint [A3] reckons if some higher-priority test is not completed 

by its deadline. 
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Each constraint [A4] records if a higher-priority test is started before a 

lower-priority one begins, or signals that this has not happened. 

Each constraint [A5] records if a precedent test has been completed 

before a successor begins, or signals that this has not happened. 

Each constraint [A6] records if a successor test has begun before a 

predecessor finishes, or signals that this has not happened. 

Each constraint [A7] determines for a newly arrived shipment of test 

assets with no specific destination where to distribute these among receiving test 

venues. 

Each constraint [A8] accounts for test asset receipts and movements by 

asset type, facility, and time period. 

Each constraint [A9] establishes the number of assets located at a venue 

and present there during a time period. 

Each constraint [A10] limits the number of assets that can be co-located at 

a test venue during a time period. 

Each constraint [A11] allocates available assets to a test venue during a 

period among various tests plus those assets held from testing for other 

purposes. 

Each constraint [A12] may optionally allocate a particular type of asset to 

a test venue during a period. 

Decision variable domains are given by [A13]. 

b. Indirect Solution (Cascade) 

Instances of this resource-constrained project scheduling integer linear program 

monolith can be very difficult to solve. In such cases, we might accept a solution with a 

large integrality gap (the difference between the cost of the solution and a lower bound 

on how much lower that cost might be for other, as yet undiscovered solutions), and 

then improve the quality of that solution as will be shown. 
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We can also employ an indirect method to solve smaller restricted 

problems in a time cascade. In such a cascade, only decision variables in a 

restricted window of the planning horizon are free, and all others are fixed. 

Beginning with a window at the start of the planning horizon, we solve for only 

the free variables. We then move the window forward in time some number of 

time periods, fixing behind us the variables leaving the window at their current 

values. If the window is sufficiently long to include the active tasks and asset 

movements that are free within it, we achieve a feasible, but sub-optimal solution. 

With either a sub-optimal monolith or cascade solution, we can improve 

solution quality by attempting to move tasks earlier in the time horizon. We fix all 

decision variables, then, one task at a time, free decision variables for just that 

task t, and attempt to minimize: 

  

MIN ( p + t_periodst −1)Xt ,v ,p

+( P +1) Dth
th∈TH
∑ + Dt

t∈T \TH
∑ + penaltyith

th∈TH
∑ LATEth

+ pri_pen PRI_VIOLth,t '
th,∈TH ,t '∈T |it >it '

∑ + prec_pen PREC_VIOLt ,t '
t∈T |t '∈Rt

∑
+move_pen m_periodsv ,v 'Ya,v ,v ',p

a,v ,v '≠v ,p
∑ [A0P]

X

s.t. [A2-A13],

  

with all variables fixed except those for test t. 

This finds gaps in the schedule and slides tasks earlier in the planning 

horizon while maintaining schedule feasibility, which is desirable. We continue 

cycling through the tasks, fixing earlier task schedules, until we find no additional 

improvement. 

  



 22 

THIS PAGE INTENTIONALLY LEFT BLANK 



 23 

IV. MODEL IMPLEMENTATION AND ANALYSIS 

A. COMPUTER IMPLEMENTATION 

We implement the mathematical model described in Chapter III in the 

General Algebraic Modeling System (GAMS) (GAMS Development Corporation, 

2014) using the IBM ILOG CPLEX mixed-integer programming (MIP) optimization 

solver. We use a computer with dual 3 GHZ processors, 96 GB RAM and dual 465 

GB disk drives. We provide additional functionality within the GAMS script to analyze 

different aspects of the scheduling problem, which are outlined in this chapter. The 

GAMS code, parameters and input data for the DT&E project are available from the 

author, or his advisors. For the following case study, the monolithic optimization 

model has 39,031 constraints and 29,271 variables, with 10,590 of these discrete 

variables. Solution times of the monolith can be hours, but we will show how this has 

been reduced to seconds with a problem cascade. 

B. ANALYSIS 

1. Case Study Data 

This thesis uses test data provided by MARCORSYSCOM from a 
previously planned DT&E project. The data contains 43 tests, 36 of which are 
involved in partial orders (i.e., have precedence relationships). All tests are either 
high or medium priority, and their duration estimates are given in days. There are 
six available test venues located across the United States, and seven test assets 
available. There is only one test asset variant, and all test assets are available at 
the beginning of testing. 

2. Methodology and Results 

We create schedules and temporal statistics based on the 

MARCORSYSCOM test data. This data provides the opportunity for one-to-one 
comparison of model outputs against SME created schedules and DT&E duration 
estimates. This data also provides a means to verify the model is performing as 

intended, and validate the model outputs. In this thesis, feasibility refers to a 
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solution that adheres to all inelastic constraints, and identifies any elastic 
constraint penalties incurred; optimality refers to how close our solution is to a 

bound on all achievable solutions. 

We verify the model is performing as designed by visually inspecting 
results to ensure that each constraint is satisfied or highlighted otherwise. This is 

done for test precedence and priority, test and venue pair assignments, and 
asset availability. Additionally, we verify the test asset movements between 

venues to ensure proper asset accountability within the network, as well as 
proper accounting of time required to make the movements. 

We validate that the model is providing feasible schedules with 

deterministic DT&E completion times comparable to those estimated by 
MARCORSYSCOM (see Table 4). The differences between the 
MARCORSYSCOM and the GAMS model estimates are within two weeks for 

three-to-six month schedules. Additionally, the results in Table 4 suggest that 
current MARCORSYSCOM estimates are overly optimistic in the shortest and 

longest DT&E completion times. This is most likely due to unintended relaxations 
of the precedence requirements when heuristically summing individual test 
durations. The results in Table 4, in conjunction with the verification process 

described above, suggest that the model is producing valid solutions. 

Table 4.   Comparative analysis of DT&E duration estimates (days) 
generated manually by MARCORSYSCOM versus the GAMS 

model estimates. GAMS model and MARCORSYSCOM 
estimates are reasonably close (within two weeks for three-to-

six month schedules). 

 
 

Optimistic Mean Pessimisstic
MARCORSYSCOM 66 110 132
GAMS8Model 74 100 143

Model8Validation

Methods DT&E8Duration8(Days)
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a. Model Tuning 

We tune the model by varying penalty parameters, discussed in Chapter 

III, and assessing any changes in feasibility, optimality, and computation time. 

We allow test precedence and priority relationships to be either elastic or 

inelastic constraints. 

In practice, the precedence relationships will most likely be treated as 

inelastic constraints, because many of the predecessor tests ensure basic safety 

requirements are met before moving on to tests that involve higher risks. 

However, this is an added restriction that may reveal test-sequencing problems 

that prevent DT&E completion time by a required date. 

As described in Chapter III, we wish to complete higher-priority tasks 

before lower-priority tasks. However, opportunities exist where there are asset 

and venue availabilities to complete lower-priority tests, but not higher-priority 

tests. Additionally, there are instances where a lower-priority test precedes a 

higher-priority one. In order to take advantage of the available capacity, and 

adhere to taut precedence constraints, we relax the priority constraints as elastic 

with no penalty. We give higher-priority tests preference by assigning them 

earlier deadlines, with higher penalties. For this data, we assign a penalized 

high-priority test deadline 30 days shorter than the estimated DT&E duration, and 

a penalized medium-priority test deadline close to the estimated DT&E duration. 

This improves model solve times and optimality. 

Additionally, planners prefer to minimize test asset movements between 

test venues if possible. We use a small move penalty of 0.1 (asset days per 

movement day) to minimize unnecessary movements. This makes solutions with 

more movements less attractive to the solver, speeds up solve times, and 

eliminates schedule solutions with unnecessary movements. 

A thorough study of the DT&E problem described in the previous chapter 

allows us to eliminate unnecessary elements from the enumerated sets. This is 

done dynamically in GAMS with the use of conditional statements that limit the 
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number of nodes, and arcs in the modeled network. We make every effort to 

reduce the dimensionality of the ILP through set enumeration reduction 

techniques, however the data still presents 39,031 equations, 29,271 single, and 

10,590 discrete variables. The reductions in run time and optimality gap (the 

difference between the value of the best solution found and a bound on how 

much better a solution might be) can be seen in Table 5. Note the pre-set 

enumeration reduction results for the optimistic and PERT mean planning 

estimates. The higher optimality gaps and run times are a function of the longer 

planning horizons required to complete all tests when considering longer 

planning estimates. The set enumeration reduction techniques achieve an 

impressive improvement in both optimality gaps, and run times. From this point 

forward, we refer to the straightforward solve of the entire ILP network with set 

enumeration reduction techniques applied as the “monolith.” 

Table 5.   Results of set enumeration reduction techniques on relative 
optimality gap (%) and run time (minutes) when solving DT&E 
schedules with Optimistic and Mean test duration estimates. 

Set enumeration reduction techniques greatly reduce the 
optimality gap in much shorter run times for longer planning 

horizons. 

 
 

As seen in Table 5, solving the monolith with longer planning horizons still 

has a relatively high computation time for simulation efforts, where we want to 

run many replications. However, in order to accommodate the entire range of 

possible test durations we must make the planning horizon at least as long as the 

pessimistic DT&E duration estimate. Judiciously choosing a planning horizon to 

be just long enough, along with the use of priority deadlines and associated 

penalties has coerced the CPLEX solver to find solutions faster. However, these 

solve times are still not suitable for simulation. 

Optimality)Gap)(%) Run)Time)(minutes) Optimality)Gap)(%) Run)Time)(minutes)
Pre6Set)Reduction 22% 34 89% 354
Post6Set)Reduction 18% 34 18% 34

Optimistic)Test)Duration)Estimates)(80)Day)
Planning)Horizon)

PERT)MeanTest)Duration)Estimates)(110)
Day)Planning)Horizon)
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We use the cascade method discussed in Chapter II to further speed up 

computation time by solving and fixing solutions for smaller ILPs over iteratively 

larger planning horizons. The cascade method does not necessarily suggest 

optimal solutions, but does provide feasible, and reasonably optimal solutions 

(within two weeks for three-to-six month schedules) with much shorter compute 

times (see Table 6).  

Table 6.   Comparative analysis of DT&E duration estimates (days) 
generated by the monolith and cascade solve methods with 

their associated run times (%). The cascade method drastically 
reduces model solve times with reasonably optimal solutions 

(within two weeks for three-to-six month schedules). 

 
 

We employ the cascade method with random variables for test durations to 

simulate overall DT&E durations, which provide a distribution of possible outcomes 

for temporal statistical analysis (see Table 7 & Figure 2). We generate random test 

durations using built-in GAMS uniform random number generator and Beta 

distributions with parameters a  and b  calculated using Equations 2 and 3.  

  

DT&E%
Duration%
(Days)

Run%Time%
(Minutes)

DT&E%
Duration%
(Days)

Run%Time%
(Minutes)

DT&E%
Duration%
(Days)

Run%Time%
(Minutes)

Monolith 74 34 100 34 143 34
Cascade 82 2 110 2 158 2

Deterministic%Differences

Solve%
Method

Optimistic%Estimates Mean%Estimates Pessimisstic%Estimates
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Table 7.   Descriptive statistics for DT&E duration simulation with 200 
trials of randomly generated test durations. 

 
 

The mean DT&E duration (117 days) from a 200-trial random test duration 

simulation is within a week of the cascade model’s deterministic result (110 days) 

using mean test duration estimates (see Tables 6 & 7). The simulation mean is 

also roughly the same as the mode for the simulation (see Table 7). This may 

suggest that the MARCORSYSCOM DT&E duration estimate (110 days) 

developed using the mean test duration estimates is robust for planning and 

budgeting purposes. However, a closer look at Table 7 reveals that less than 

25% of the simulated DT&E durations were 110 days or shorter. 

  

100.0%
99.5%
97.5%
90.0%
75.0%
50.0%
25.0%
10.0%
2.5%
0.5%
0.0%

maximum

quartile
median
quartile

minimum

138
138
132
127
123
118
112
107
100

98.01
98

Quantiles
Mean
Std Dev
Std Err Mean
Upper 95% Mean
Lower 95% Mean
N

117.3
7.956
0.563
118.4
116.2

200

Summary Statistics
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Figure 2.  Histogram of DT&E duration (days) simulation with 200 trials 

of randomly generated test durations. The outcomes appear to 
be normally distributed. 

The full range of simulated DT&E duration outcomes (see Figure 2) 

provides a better assessment of the temporal risks involved for planning and 

budgeting purposes than the current MARCORSYSCOM point estimates of 

optimistic, mean and pessimistic. 

In order to make probabilistic statements about these outcomes, we 

conduct a statistical test to determine if the DT&E duration outcomes can be 

reasonably represented as normally distributed (see Table 8). The results of a 

Shapiro-Wilk Test (Shapiro & Wilk, 1965) lead to accepting the null hypothesis 

that our sample is normally distributed. 
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Table 8.   A Shapiro-Wilk Test leads us to accept the null hypothesis 
that the results from a 200-trial simulation of DT&E duration 

can be reasonably represented as normally distributed. 

 
 

We also conduct a visual inspection of a Normal quantile-quantile plot  (see 

Figure 3) for further evidence of normality (Wilk & Gnanadesikan, 1968). The Normal 

probability plot points of the simulated DT&E durations, in black, follow closely with the 

Normal line (solid red) providing us further confidence to make probabilistic 

statements about DT&E durations assuming they are normally distributed.  

 
Figure 3.  The Quantile-Quantile Normal probability plot points of the 

simulated DT&E durations (in black) follow closely with the 
Normal line (solid red) providing us further confidence to make 
probabilistic statements about DT&E durations assuming they 

are normally distributed. 
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By assuming that the DT&E durations are normally distributed, we can 
make probabilistic statements such as: “what is the probability of completing 

DT&E within a 110 days (the MARCORSYCOM planning estimate),” or “what is 
the number of days required to complete DT&E with a probability of 80%?” The 

answer to the first question is P(DT&E Complete ≤  110 days) = .18 . This is a fairly 

low probability of success for making milestone planning and budgeting 
decisions. However, the answer to the second question 

P(DT&E Complete ≤  X days) = .8  is 124 days. This may or may not be a big 

difference (close to three weeks) to the planners and decision makers, but this 

certainly provides more information for better analysis and decision making than 
point estimates. This statistical hypothesis test result suggesting a Normal distribution 
for total test program duration with Beta-distributed test durations is most useful for 

analysis and inference with this test program, but not for any other test program, or 
even for any modification of this test program. Case-by-case, test program-by-test 
program, we must employ similar analyses before assuming normality elsewhere. In 

fact, it is easy to conjure realistic test programs with Beta-distributed task times that 
result in far from normally distributed total test program durations. 

b. Trade Space Analysis 

As discussed in Chapter I, DT&E planners as well as program managers 
are often concerned with analyzing multiple COAs. We use the mean planning 

estimates for test durations to assess the trade space between number of 
available assets and DT&E duration. We use a technique commonly referred to 

as project crashing, to flood the model with additional assets to determine the 
shortest amount of time required to finish testing, and then reduce the number of 
assets available to determine their effect on completion times (see Figure 4). 

When graphed, this produces a piece-wise linear function that can be visually 
analyzed for cost-benefit analysis, or to determine the right number of test assets 
required to complete testing within a given time horizon. This may also be 

valuable to the DT&E planners to have multiple schedules on hand in the event 
that more or less assets become available before, or during testing.  
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Figure 4.  Trade space analysis plot of number of available assets 

versus DT&E duration (days) using mean test duration estimates. 
DT&E duration decreases by roughly one month per asset from 
five-to-seven assets and then two weeks per asset from seven-

to-nine assets. 

The results in Table 9 provide further evidence that the monolith becomes 

more difficult to solve (run time) as the resources (test assets) become more 

limited, and require longer planning horizons. However, as we have shown, this 

can be ameliorated by indirect cascade solutions. 

Table 9.   Resulting DT&E durations (days), required planning horizon 
(days), relative optimality gap (%), and run time (minutes) for 

given # of available test assets using mean test duration 
estimates. 
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V. CONCLUSIONS AND RECOMMENDATIONS 

A. CONCLUSIONS 

This thesis presents an optimization and simulation model as a decision 

support tool to improve current DT&E scheduling. The proposed model, unlike 

current manual scheduling techniques, suggests schedules that are feasible, 

nearly optimal, and are produced in a timely manner for effective analysis of 

alternatives. 

We formulate the difficult and time-consuming DT&E scheduling problem 

as an integer linear program (ILP). We incorporate set enumeration reduction 

techniques that reduce monolith solve times while suggesting DT&E schedules 

and associated duration estimates that are comparable to current methods. The 

ensured feasibility of these schedules and duration estimates provide additional 

confidence for coordination, milestone planning and budgeting purposes.  

An additional benefit is that should any change occur in scheduling, we 

can re-schedule quickly, preserving near-term, already-promulgated events, 

and/or in the longer term, employing methods to reduce turbulence in schedule 

changes (Brown et al., 1997). 

We employ a cascade method to further reduce solve times for simulating 

DT&E durations with test durations as random variables from the Beta 

distribution. The simulation results provide a more complete picture of the 

possible DT&E test duration outcomes for analytic decision making than the 

current point estimates. 

At a minimum, this model can be used to validate the feasibility of 

manually created schedules. 

B. FUTURE WORK 

In this study, we provide a model that suggests feasible and 

conservatively optimal DT&E schedules for increased analytics. Further studies 
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may enhance monolith and cascade solution optimality with reduced run times. 

Additionally, the data inputs and parameters to this model may be automated 

from a single user form, possibly a graphical user interface, for ease of use. It is 

straightforward to embed our model and solver with Microsoft Excel. There is 

also work that could be done to automate the schedules into a format that is 

more like the current MARCORSYSCOM final products as well as generate 

analytical tables and graphs as shown in Chapter IV.   
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